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Abstract—Exploratory data analysis is the primary technique
used by data scientists to extract knowledge from new data sets.
This type of workload is composed of trial-and-error hypothesis-
driven queries with a human in the loop. To keep up with
the data scientist’s productivity, the system must be capable of
answering queries in interactive times. Given that these queries
are highly selective multidimensional queries, multidimensional
indexes are necessary to ensure low latency. However, creating the
appropriate indexes is not a given due to the highly exploratory
and interactive nature of such human-in-the-loop scenarios.

In this paper, we identify four main objectives that are
desirable for exploratory data analysis workloads: (1) low over-
head over the initial queries, (2) low query variance (i.e., high
robustness), (3) predictable index convergence, and (4) low total
workload time. Given that not all of them can be achieved at
the same time, we present three novel incremental multidimen-
sional indexing techniques that represent three sample points
on a Pareto front for this multi-objective optimization problem.
(a) The Adaptive KD-Tree is designed to achieve the lowest total
workload time at the expense of a higher indexing penalty for the
initial queries, lack of robustness, and unpredictable convergence.
(b) The Progressive KD-Tree has predictable convergence and a
user-defined indexing cost for the initial queries. However, total
workload time can be higher than with Adaptive KD-Trees, and
per-query time still varies. (c) The Greedy Progressive KD-Tree
aims at full robustness at the expense of only improving the
per-query cost after full index convergence.

Our extensive experimental evaluation using both synthetic
and real-life data sets and workloads shows that (a) the Adaptive
KD-Tree reduces total workload time by up to a factor 2 com-
pared to the state-of-the-art, (b) the Progressive KD-Tree achieves
predictable convergence with up to one order of magnitude
lower initial query cost, and (c) the Greedy Progressive KD-
Tree exhibits the lowest query variance up to three orders of
magnitude lower than the state-of-the-art.

I. INTRODUCTION

When analyzing a new data set, data scientists impose
exploratory queries to extract knowledge from the underlying
data. Their workflow has three main steps. (1) They generate
a hypothesis about the data; (2) they validate it on a trial-and-
error basis by issuing highly selective queries to check small
portions of the data; (3) they adjust their hypothesis based on
step (2) and repeat until satisfied [1].

This process can require many time-consuming trial-and-
error iterations until the data scientist can extract the desired
information. There is a direct impact on the query performance
of each iteration and the rate on which the data scientists can
refine their findings. A study by Liu et al. [2] proposed the
maximum data-to-insight time for each hypothesis checking
iteration, which should not surpass an interactivity threshold
of 500 ms. For small data sets, full scans are fully capable

of executing queries within this time limit, but for larger
multidimensional data sets, only a multidimensional index
that covers the query attributes is capable of pushing query
response time below the 500 ms interactivity threshold.

The selection of beneficial indexes is one of the most difficult
physical design decision that a database administrator (DBA)
has to face, due to the combinatorial explosion of possible
indexes and the trade-off between workload speedup vs. index
size, creation, and maintenance costs [3]. This task is usually
alleviated through the use of self-tuning tools [4]. These tools
capture the executing workload, select the most relevant queries,
and weigh in index creation/maintenance costs versus the
benefits they would bring to most queries. They are then
capable of suggesting a collection of indexes that the DBA
must evaluate and create or drop.

Although self-tuning tools [4] have been widely successful
in data warehouses, they are not capable of facilitating this
process for data scientists. There are three key differences
when comparing exploratory workloads and classic OLAP.
(1) With exploratory workloads, there is no previous workload
knowledge. (2) There is no available idle time for a priori full
index creation. (3) Data scientists do not have the same skill
set as DBAs to weigh in the index suggestions.

Techniques like Adaptive Indexing [5], [6] and Progressive
Indexing [7] aim to alleviate the index construction issue
on exploratory workloads by creating partial uni-dimensional
indexes as a result of query processing. In this way, indexes
are automatically created without any human intervention and
incrementally refined towards a full index, the more the data is
accessed. However, these techniques have very limited use on a
broad group of data sets since they only target uni-dimensional
workloads. For instance, the 1000 genomes project [8] has
human genetic information, the Power data set1 that contains
sensor information from a manufacturing installation, and the
SkyServer data set [9] which maps the universe, are some of
many examples that perform multidimensional filtering.

Recently, Pavlovic et al. [10] published a study on multi-
dimensional adaptive indexes, initially testing a Space-Filling
Curve strategy, where multiple dimensions are mapped to
one dimension. They used uni-dimensional adaptive indexing
techniques on top of the created map. However, the indexing
burden in the first queries was too high, making this approach
unfeasible for interactive times. They later propose the QUASII
index, a d-level hierarchical structure that similarly partitions

1https://debs.org/grand-challenges/2012/



the data as the coarse granular index strategy [6]. When
accessing one piece, the data is continuously refined until
all pieces within that piece are smaller than a given size
threshold. This strategy is much more efficient in smearing
out the cost of index creation than the Space-Filling Curve
Adaptive Indexing. However, it results in two highly undesirable
characteristics for exploratory workloads. (1) Due to the
continuous piece refinement, it heavily penalizes queries when
they first access one piece; (2) since the index prioritizes an
aggressive refinement only on areas targeted by the executing
query, it is not robust against changes in the access pattern,
resulting in performance spikes if the workload suddenly
accesses a previously unrefined piece.

This paper introduces three novel algorithms to tackle
the problem of multidimensional adaptive indexing under
exploratory data analysis. (a) The Adaptive KD-Tree, inspired
by adaptive indexing, performs indexing using the query
predicates as pivots, hence aiming for minimum total response
time. (b) The Progressive KD-Tree, inspired by fixed-delta
progressive indexing, introduces a per-query indexing budget
that remains constant during query execution. Hence, a user-
controlled amount of indexing is done per query. (c) The Greedy
Progressive KD-Tree uses a cost model to automatically adapt
the indexing budget to keep the per-query cost constant until
full index convergence, achieving a low variance per-query.

The main contributions of this paper are:
• We propose a new multidimensional adaptive index called

Adaptive KD-Tree inspired by standard adaptive indexing
techniques.

• We introduce a new progressive indexing approach for
multidimensional workloads named Progressive KD-Tree.

• We present a cost model for our Progressive KD-Tree to
enable an adaptive indexing budget.

• We experimentally verify that our techniques improve
total execution time, initial query cost, robustness, and
convergence compared with the state-of-the-art.

• We provide an Open-Source implementation2 of all
techniques discussed in this paper including the state-
of-the-art we compare with.

We consider relational data sets with d dimension attributes
and possibly additional “payload” attributes, and we assume
that all queries have a conjunctive selection predicate consisting
of d terms, i.e., exactly one term for each dimension attribute.

Outline. This paper is organized as follows. In Section II,
we investigate related research that has been performed on uni-
and multidimensional automatic/adaptive index creation. In
Section III, we describe our novel Multidimensional Adaptive
and Progressive Indexes. In Section IV, we perform a quantita-
tive assessment of each of the novel methods we introduce, and
we compare them with the state-of-the-art on multidimensional
adaptive indexing under three real workloads and eight synthetic
workloads. Finally, in Section V, we draw our conclusions and
discuss future work.

2Our implementations and benchmarks are available at https://github.com/
pdet/MultidimensionalAdaptiveIndexing and https://zenodo.org/record/3835562

II. RELATED WORK

The creation of indexes has been a long-standing problem
in database automatical physical design. The combinatorial
possibilities of indexes when designing a database make the
selection of indexes an NP-Hard problem [3]. For most OLAP
scenarios, it is possible to capture a relevant workload, select
pertinent indexes to the workload, analyze their creation and
maintenance overhead in contrast to their query execution
benefit, and invest in a priori full index creation [4]. In
data exploration, we do not have idle time to invest in full
index creation as we do not have any previous information or
opportunity to gather workload knowledge. Hence, Adaptive
and Progressive Indexing techniques are more promising
solutions. They create indexes during query execution, taking
the current running workload as priority-refinement hints.

In this section, we briefly discuss the state-of-the-art multi-
dimensional index structures and adaptive/progressive indexing
techniques.

A. Multidimensional Data Structures

R-Tree [11] is an N-ary multidimensional tree that gener-
alizes the B-Tree. Nodes represent rectangles that bound the
insertion points of data (i.e., coverage), and different rectangles
may overlap data. Like B-Trees, the insertions and deletions
require splitting and merging nodes to preserve height-balance
with all leaves at the same depth. The internal nodes keep a
way of identifying a child node and representing the boundaries
of the entries in the child nodes, while the external nodes store
the data. The R-Tree has a variant, the R*-Tree [12], for read-
mostly workloads that balances the rectangle coverage and
reduces overlapping.

VA File [13] is a flat structure that divides an m-dimensional
space in 2b rectangular cells. Users assign b bits to be
distributed over the m dimensions. A unique bit-string of length
b is set for each cell, and data objects use a hash method to
find the spacial position to each value (i.e., approximation by
the bit-string).

KD-Tree [14] is a multidimensional binary search tree,
where k is the number of dimensions of the search space
that are switched between tree levels. The performance of KD-
Trees is of great advantage as searches, insertions, and deletions
of random nodes present logarithmic complexity and search of
t tuples present sub-linear complexity. The nodes of the tree
are insertion points. Therefore, the order of insertion shapes
the tree structure but increases the complexity of maintenance
when tree re-balancing is needed after deletion.

PH-Tree [15] implements a bit-string prefix sharing tree to
reduce the space requirements compared to single key storage.
The bit-string representation is used to navigate the dimensions
in a Quadtree, where the first bit of the index entry indicates
the position in the search space.

Flood [16] is a multidimensional learned index. The learning
algorithm’s goal is to help to tweak performance parameters
of the index, like the layout of the index by choosing between
a grid of cells or columns (in a 2-D representation), the size
of each cell, and the sort order of each cell or column.



Discussion. To compare these index structures, we must put
them in the context of the data exploration scenario. Although
Flood has a significant advantage of finding an efficient setup
by searching the parameters’ space, it is not a good fit for our
types of workloads since it requires a considerable amount
of time to be invested in model training (i.e., index creation).
PH-Trees present efficient lookups, but they are catered to
data sets where data points are not evenly spread and share
many prefixes. Finally, KD-Trees, VA Files, and R*-Trees have
been thoroughly examined, in the main memory context, by
Sprenger et al. [17]. The work concludes that the KD-Trees
outperform R*-Trees and VA Files due to its point storage
design. VA-Files have even a more significant disadvantage for
shifting access patterns, common in exploratory data analysis,
since it is a non-adaptive structure with a static number of bits
assigned per dimension. Considering each technique’s main
drawbacks and advantages, we decided to use a KD-Tree as
our multidimensional index of choice for exploratory data
analysis, as a full index baseline and the index structure that
holds the data for both our adaptive and progressive solutions.
In summary, the reasons are its robust performance against
shifting workloads, different from VA Files and PH Trees, the
higher performance when compared to R*-Trees, and low index
creation cost compared to Flood.

B. Adaptive/Progressive Index

Adaptive Indexing [5], [6] enables efficient incremental index
creation, as a side effect of query execution. It only indexes
columns that are truly queried and incrementally refines the
indexes the more they are queried, eventually converging to a
similar performance as a full index. Progressive Indexing [7]
differs from Adaptive Indexing techniques in having a limited
amount of indexing budget that it can perform per query. This
budget allows for increased robustness, predictable performance,
and full-index convergence while being highly competitive
in total response time. However, most of these techniques
are catered to produce uni-dimensional indexes. In the next
paragraphs, we discuss the state-of-the-art adaptive indexing
techniques that produce multidimensional indexes.

Space Filling Curve Cracking [10] uses a space-filling
curve technique that preserves proximity (e.g., Z-Order, Hilbert
Curve) to map multiple dimensions into one dimension. This
additional step enables the use of uni-dimensional adaptive/pro-
gressive indexing techniques. Later on, queries also must be
translated to this uni-dimensional mapping.

QUASII [10] Following the adaptive indexing philosophy,
QUASII incrementally builds a multidimensional index priori-
tizing refinement on queried pieces. One significant difference
compared to standard adaptive indexing techniques is that
QUASII has a more aggressive refinement behavior. When
accessing a piece, it recursively refines it until its size drops
below a size threshold . QUASII pays higher refinement costs
when a piece is accessed the first time to yield fast query
response time when frequently accessing refined pieces.

Discussion. Space-Filling Curve Cracking is the first attempt
to perform adaptive indexing of multiple columns. However, as

demonstrated by Pavlovic et al. [10], mapping is prohibitively
expensive on the first query, excluding this strategy from truly
adaptive indexes. QUASII is a more promising solution since
it features characteristics that are similar to standard adaptive
indexing techniques. However, QUASII’s aggressive refinement
strategy is undesirable in an adaptive indexing strategy hurting
query robustness. Besides, QUASII forces initial queries to pay
an unnecessarily high cost. Finally, other techniques are self-
proclaimed multidimensional adaptive indexes, like AQWA [18]
and SICC [19]. However, they do not focus on exploratory
data analysis but rather on adaptive indexing for data ingestion.
The main goal of AQWA is to adjust for changes in the data in
a Hadoop distributed scenario. Simultaneously, SICC mainly
focuses on reducing “over-coverage” in entries of frequent data
ingestion in streaming systems. Hence, they do not focus on
a low penalty for the initial queries, on robustness or index
convergence.

III. MULTIDIMENSIONAL ADAPTIVE/PROGRESSIVE INDEX

In exploratory data analysis, multidimensional indexes must
be created concerning four main objectives. (1) They must not
inflict a high penalty over the initial queries since we do not
know in advance if a group of columns will be queried only
once or multiple times. (2) They should be robust, avoiding
performance variations for similar queries, which is undesirable
from the user perspective but can happen on incremental
indexes due to access to less refined pieces. (3) They should
guarantee predictable convergence to an index that yields the
same performance as a full index. (4) They should minimize
the total response time for a given workload to maximize
the number of hypotheses that can be tested in the same
amount of time. This section presents three adaptive/progressive
indexing techniques for multidimensional data that represent
three sample points on a Pareto front for this multi-optimization
problem. (a) The Adaptive KD-Tree is optimized to achieve
the lowest total response time. (b) The Progressive KD-Tree is
designed to incur a low indexing cost over the initial queries and
to have a predictable convergence. (c) The Greedy Progressive
KD-Tree is designed to have a low performance variance until
full index convergence.

The indexing techniques presented in this paper focus on
fixed-width numerical data types and assume an uncompressed
in-memory columnar data storage using a dense array per
column/attribute. To the best of our knowledge, this also
holds for all previously proposed adaptive indexing techniques,
both uni- and multidimensional. An extension to also support
variable-length strings, e.g., using a dictionary encoding and
reorganizing only the fixed-width array of indices representing
the actual columns, is mainly an engineering exercise that is
beyond the scope of this paper and left for future work.

A. Adaptive KD-Tree

The Adaptive KD-Tree is a multidimensional adaptive
indexing technique that follows the same principles as Adaptive
Indexing [5]: (1) It uses the query predicate as hints as to what
pieces of the data should be indexed, and (2) only indexes



the necessary pieces to answer the current query. Our index
has two main canonical phases. The initialization phase only
happens when the first query selecting a group of non-indexed
columns is executed. In this phase, we create a copy of the
original table into our index table. In the adaptation phase, we
swap rows in the index table to partition it according to the
query predicates.

In this section, we describe the general structure of our index,
how the per-query adaptation works, and how we perform index
lookups and piece scans.

Data Structures. The Adaptive KD-Tree uses a KD-Tree
to store information regarding the offset of the pieces: Each
node contains a key, a discriminator attribute, two pointers
for the left and right children, and the position offset that
keeps track of the created pieces. Since it is a secondary index,
this position offset points to our index table stored in the
decomposition storage model (DSM) format. The index table
is initially created as a copy of the original table when the first
query is executed.

Adaptation phase. The adaptation phase is triggered in all
queries until the index fully converges. The adaptation performs
two main steps:

1) In a KD-Tree, each node splits the data set along only one
dimension, all nodes on the same level use the same dimension,
and the levels from the root to the leaves of the tree iterate
through the dimensions in a round-robin fashion. To achieve
this, when processing a query, we first iterate through the lower
bounds of all column predicates, and then through the upper
bounds of all column predicates, inserting these boundaries into
the KD-Tree, and pivoting the respective pieces accordingly. For
example, given the predicates 6 < A ≤ 13 AND 5 < B ≤ 8,
the adaptation order would use this sequence attribute-value
pairs: (A, 6), (B, 5), (A, 13), (B, 8).

Using query predicates as pivots rather than median values,
as an “optimal” KD-Tree would do, is a conscious choice,
favoring workload adaptivity over theoretical guarantees.

2) For each attribute-value pair, we physically adapt the
data on the pieces that are relevant to the predicate. This is
only done if the piece size is bigger than a previously defined
size threshold . size threshold is chosen such that the extra
effort of indexing would not outperform a simple scan.

Figure 1 depicts an example of the adaptation phase when
executing the first query with predicates 6 < A ≤ 13
AND 5 < B ≤ 8 with size threshold = 4. In the
first part of our example, we have our initialized index
table equal to the original table. In the second step, we
start the adaptation phase generating the attribute-value pairs
(A, 6), (B, 5), (A, 13), (B, 8), and partitioning the index table
for each of those pairs. In the example, the second step
demonstrates the partition of pair (A, 6). We swap the rows
of our table, taking 6 as a pivot for the first column A, and
insert in the KD-Tree the pivot 6 with the position offset 6. In
the third step, we partition the pair (B, 5), where the table is
pivoted in the second column B with pivot 5, later on adding
it to the KD-Tree. Note that we could perform this partitioning
in both the top (A ≤ 6) and bottom (A > 6) pieces of our

Initialized  
Table

6 5 0
3 9 1
16 4 2
13 2 3
2 8 4
1 11 5
8 7 6
19 19 7
7 12 8
12 20 9
11 3 10
4 6 11
9 16 12
14 2 13
Q: 6 < A ≤ 13

AND 5 < B ≤ 8 

Adapt 
(A, 6)

A ≤ 6

6 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4
13 2 5
8 7 6
19 19 7
7 12 8
12 20 9
11 3 10
16 4 11
9 16 12
14 2 13

Adapt 
(B, 5)

A ≤ 6

6 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4
13 2 5
14 2 6
16 4 7
11 3 8
12 20 9
7 12 10
19 19 11
9 16 12
8 7 13

B ≤ 5

5 < B

Adapt 
(A, 13)

A B A B A BOff Off Off

A ≤ 6

6 < A

B ≤ 5

5 < B

A ≤ 13

13 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4
13 2 5
14 2 6
16 4 7
11 3 8
12 20 9
7 12 10
9 16 11
8 7 12
19 19 13

A B Off

Fig. 1: Adaptive KD-Tree: The adaptation phase with query:
6 < A ≤ 13 AND 5 < B ≤ 8, and size threshold = 4.

table. However, since the Adaptive KD-Tree only indexes the
minimum to answer the query, we only refine the piece that
potentially contains query answers (here, A > 6), leaving the
piece that surely contains no query answers (A ≤ 6) unchanged.
A similar process is done for the next pair (A, 13) depicted as
the fourth step. At this step, the resulting piece size reaches
the size threshold , and no further partitioning happens for the
last pair (B, 8).

Index Lookup. After performing the necessary adaptations
for the query, we perform an index lookup followed by the scan
of all pieces that fit our query predicates. The index lookup
starts from the root of the KD-Tree and recursively traverses
the tree depending on how the query relates to the current node
key. In Figure 2 we depict an example of the entire search
process for predicates 6 < A ≤ 15 AND 0 < B ≤ 5. The

Q: 6 < A ≤ 15
AND 0 < B ≤ 5 

A ≤ 6

6 < A

B ≤ 5

5 < B

A ≤ 13

13 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4
13 2 5
14 2 6
16 4 7
11 3 8
12 20 9
7 12 10
9 16 11
8 7 12
19 19 13

A B Off

A ≤ 6

6 < A

B ≤ 5

5 < B

A ≤ 13

13 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4

13 2 5
14 2 6
16 4 7
11 3 8
12 20 9
7 12 10
9 16 11
8 7 12

19 19 13

A B Off

Fig. 2: A search with predicates 6 < A ≤ 15 AND 0 < B ≤ 5
in the Adaptive KD-Tree.



search method starts by comparing the root of the tree, that
indexes column A on key 6, with the range 6 < A ≤ 15. We
need to check the right child of the root since both predicate
boundaries are greater than the node (i.e., where all elements
on A > 6 are stored.). We now compare the range 0 < B ≤ 5
to the node that indexes column B on key 5. Note that this
time, the predicate boundaries are lower or equal to the node’s
key. Hence, we only need to check its left child. Finally, since
the left child is null, we scan the piece starting on offset 5
until offset 9.

Piece Scan. The index lookup returns a list of pieces that
we scan to answer the query. For each piece, we have a pair of
offsets indicating where they begin and end, and information
of which predicates still need to be checked. For example,
in Figure 2, on the rightmost column, the index would have
returned one piece, with offsets 5 and 9. For this piece, we
know that all elements in there are 6 < A and B ≤ 5. Hence,
we do not need to apply the lower and higher query predicates
of attributes A and B, respectively. However, whenever the
index does not match our query predicates exactly, we need to
perform a multi-dimensional conjunctive selection on one or
more pieces. There are, in general, two ways to perform multi-
dimensional conjunctive selections in column stores. (1) We
perform the selection on each column individually, creating an
intermediate result per column as (candidate) list of IDs (or
as bit-vector). Later, intersecting all lists (or and-ing all bit-
vectors) to yield the final result. (2) We perform the selection
over one column, creating an intermediate as (candidate) list
of IDs (or as bit-vector). Then we use this candidate list (or
bit-vector) to test the selection predicate on the next column
only for those tuples that qualified with the first column and
create a revised candidate list (or bit-vector) as an intermediate
result reflecting both selections. We continue accordingly for
all remaining columns. Option (1) is advantageous for low
selectivities, since they focus on sequential scans over the
whole data set, while option (2) presents the best performance
over high selectivities since, except the first column, we only
check elements that qualify. Hence, in all our scans we use
option (2) with a candidate list to achieve the best performance.

Interactivity Threshold. The user must provide the Adap-
tive KD-Tree with an interactivity time threshold τ . In case a
simple full scan of the data already exceeds τ , the Adaptive
KD-Tree will perform a pre-processing step with the first query.
This pre-processing step constructs a partial KD-Tree, using
arithmetic means as pivots, until pieces are small enough (i.e.,
their scan cost is below τ ). All subsequent queries will proceed
with refining this KD-Tree as previously described. In this way,
only the first query exceeds the interactivity threshold τ .

B. Progressive KD-Tree

The Progressive KD-Tree is a multidimensional progressive
indexing technique inspired by Progressive Quick-Sort [7].
Like one-dimensional progressive indexing techniques, the
main goals of Progressive KD-Tree are to limit the indexing
penalty imposed on the first query, achieve robust performance,
and ensure deterministic convergence towards a full index —

irrespective of the actual query workload or data distribution.
We accomplish all three goals by indexing a fixed-size portion
of the data with each query, independent of the query predicates.
The per-query indexing budget (and hence overhead over a scan)
and the convergence speed can be controlled by a parameter
δ that determines the fraction of the entire data set indexed
with each query. Opting for workload-independence, we need
to choose the partitioning pivots independent of the query
predicates. We use the average value (arithmetic mean) to yield
a reasonably balanced KD-Tree also with skewed data. Our
experiments in Section IV show that determining the median
to guarantee a perfectly balanced KD-Tree is prohibitively
expensive and does not pay off. The Progressive KD-Tree
follows two phases. In the initial creation phase, each query
copies a δ fraction of the data out-of-place to our index, while
pivoting on the average value of the first dimension. After
all data has been copied, in the subsequent refinement phase,
queries further split the existing pieces until their size drops
below a size threshold . When all pieces reach the qualifying
size, we consider that the index has converged to a full index.
A fully-converged Progressive KD-Tree will have the same
structure as a pre-built full index KD-Tree using arithmetic
means as partitioning pivots.

Creation Phase. The creation phase copies the data from the
original column into our index while filtering and pivoting it on
that column’s average value. The filtering process is similar to
the Adaptive KD-Tree piece scan when copying and pivoting
a dimension of the data. We create a candidate list to keep
track of elements that qualify its filters. This candidate list is
subsequently refined when copying and pivoting the remaining
dimensions.

Figure 3 depicts an example of the creation phase in the
iterations Create 1 and Create 2. In the Create 1 iteration, we
allocate an uninitialized table in DSM format, with columns
A and B, having the same size as the columns of the original
table. We start partitioning in the first dimension A. Unlike the
Adaptive KD-Tree, the pivot selection is not impacted by the
query predicates. We use the average of that piece’s dimension,
which is calculated during data loading. In the example, the
average value of the whole column A is 9. We then scan the
original table and copy the first N ∗ δ rows to either the top
or the bottom of the index depending on how they compare
to the pivot. In our example, we index half of our table, since
δ = 0.5. In this step, we also search for any elements that fulfill
the query predicate. Afterward, we scan the not-yet-indexed
fraction of the original table to completely answer the query. In
subsequent iterations, as depicted in Create 2, we scan either
the top, bottom, or both pieces of the index based on how the
query predicate relates to the chosen pivot. In our example,
the running query has a filter 3 < A ≤ 8, and we only need to
scan the upper piece of our index. Finally, we copy and pivot
the other half of our table to our index.

Refinement Phase. With the original table no longer
required to compute queries, we now perform index lookups.
While doing these lookups, we further refine the index pieces
until they all have become smaller than a given size threshold,
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Fig. 3: Progressive KD-Tree with index budget δ = 0.5 and
size threshold = 2. Four queries submitted in the workload.

progressively converging towards a full KD-Tree. We focus on
refining pieces of the index required for query processing (i.e.,
pieces containing query pivots). If these pieces are fully refined
(i.e., the pieces containing query pivots children reach a size
below size threshold ) and the indexing budget is not over,
refinement is continued on a size priority, refining the largest
piece first. The refinement is done by recursively performing
quicksort operations to swap rows inside the index. Like the
creation phase, we also keep track of the sum left and right
children of the indexed piece, which is later used as pivots
for the children. After all the refinement for that query is
completed, we perform a similar index lookup and piece scan
as the Adaptive KD-Tree. The only difference is that we need
to also take into account pieces where pivoting is not finished.

Figure 3 depicts an example of the refinement phase. In
our example, the running query has the filters 10 < A ≤ 20
and 7 < B ≤ 9. A lookup in the index indicates a scan of
the bottom piece, and hence that is the piece to be refined on
dimension B. We use root.right sum

root.end−root.current end value as the
pivot. In the example, the pivot is the value 8. With δ = 0.5,
we are capable of fully refining that piece around 8. Due to
our size threshold = 2, we mark the bottom piece as finished,
and no further refinement occurs.

Interactivity Threshold. The user must provide the Progres-
sive KD-Tree with an interactivity time threshold τ and a δ.
We distinguish two situations depending on the full scan costs.
(1) If a simple scan of the entire table does not exceed τ , we
use the cost model, presented in the next section, to calculate
a δ′ such that the first query (incl. indexing a δ′ fraction of the
data) does not exceed τ . We then use δ = min(δ, δ′) for all
queries, ensuring that none exceeds τ . (2) If a simple scan of
the entire table does exceed τ , we use the user-provided δ until
the KD-Tree is sufficiently built such that the scan cost per
query drop below τ . Then, we calculate a δ′ as in situation (1)
and proceed as described above.

C. Greedy Progressive KD-Tree

While the δ parameter of Progressive KD-Tree allows us to
control both the per-query indexing effort (and hence overhead)
and the speed of convergence towards a full index, there is a
mutual trade-off. The smaller δ, the lower the overhead, but the
slower the convergence; the larger δ, the faster the convergence,
but the higher the overhead.

Let tscan denote the time to scan the entire data set, tbudget
denote the time it takes to pivot/refine a δ fraction of the
data set, t′i denote the net query execution time (i.e., without
refining the index) of the ith query Qi given the current state
of the index, and ti = t′i + tbudget denote the gross execution
time (i.e., incl. refining the index) of the ith query Qi given
the current state of the index. The gross execution time ti of
each query with Progressive KD-Tree is bounded by ttotal =
tscan + tbudget , i.e., ti ≤ ttotal . While this is a tight bound for
the first query (t′0 = tscan ⇒ t0 = ttotal ), it gets looser the
more queries are being processed and the more of the index
is partly constructed, as then the partial index is likely to let
queries become faster than a scan (t′i < tscan ⇒ ti < ttotal ).
While generally decreasing, t′i, and hence ti, can still vary
significantly until the index is fully built.

We proposed Greedy Progressive KD-Tree as a refinement
of Progressive KD-Tree to ensure that, until the index is fully
created, each query Qi has the same gross execution time
ti = t0 = ttotal , i.e., exploits the full difference between ttotal
and t′i for indexing. In this way, we speed-up convergence
without increasing total query execution time. To do so, we
introduce a cost model that estimates the net execution time
t′i for each query Qi and calculates its maximum indexing
budget as t′budget,i = ttotal − t′i, from which we derive δ′i
for each Qi. The first query uses the user-provided δ, i.e.,
δ′0 = δ ⇒ t′budget,0 = tbudget .

Cost Model. The cost model considers the query and the
state of the index in a way that is not affected by different
data distributions, workload patterns, or query selectivities.
In a nutshell, our cost model can tell how much data will
be scanned, hence yielding a conservative δ′i that guarantees
that our query cost will never exceed ttotal . A conservative δ′i
means the highest possible δ′i in the worst-case, where any of
the construction/refinement boosts the current query execution.
However, if the query execution finishes below the ttotal limit,
we perform one extra step called the reactive phase to perform
an extra indexing until fully consuming the ttotal limit. The
parameters of the Greedy Progressive KD-Tree cost model are
summarized in Table I.

Creation Phase. The total time taken in the creation phase
is the sum of (1) the index lookup time (i.e., time to access the
root node and decide if we scan the top/bottom of our table),
(2) the indexing time, and (3) the original table scan.

(1) To calculate the index lookup time, we need to account
for the node access and the top/bottom access of each column
of our table, where we perform two random accesses 2∗φ ,one
for the root and one to access the indexed table’s first column,
and α∗N

γ for the total data we must scan. Since our data has



System ω cost of sequential page read (s)
κ cost of sequential page write (s)
φ cost of random page access (s)
σ cost of random write (s)
γ elements per page

Data set N number of elements in the data set
& Query α % of data scanned in partial index

d number of dimensions
Index δ % of data to-be-indexed

ρ % of data already indexed
h height of the KD-Tree

TABLE I: Parameters for Progressive Indexing Cost Model.

d dimensions, we must account one random access for the
additional columns and multiply the sequential scan by d− 1.
The index lookup time is tlookup = 2 ∗ φ+ α∗N

γ + (d− 1) ∗ φ.
Simplifying to tlookup = α∗N

γ + (d+ 1) ∗ φ.
(2) The indexing time (i.e., index construction time) consists

of scanning the base table pages and writing the pivoted
elements to the result array. The indexing time is calculated
by multiplying the time it takes to scan and write a page
sequentially (κ + ω) by the number of pages we need to
write summed with the access of each dimension, resulting in
tindexing = (κ+ ω) ∗ N∗δγ + (d− 1) ∗ φ.

(3) The original table scan, is given by sequentially reading
all not-yet-indexed data. The total fraction of the data that
remains unindexed is 1 − ρ − δ, hence the scan time of the
original table is given by tscan = (1−ρ−δ)

γ ∗ ω.
The total time taken for the creation phase is the sum of all

three steps, hence ttotal = tlookup + tindexing + tscan and we
set δ = tbudget

(κ+ω)∗Nγ +(d−1)∗φ .
Refinement Phase. In the refinement phase, we no longer

need to scan the base table. Instead, we only need to scan the
fraction α of the data in the index. However, we now need
to (1) traverse the KD-Tree to figure out the bounds of α,
and (2) swap elements in-place inside the index instead of
sequentially writing them to refine the index. The cost for
traversing the KD-Tree is given by the height h of the KD-
Tree times the cost of random page access φ, resulting in
tlookup = h ∗ φ. For the swapping of elements, we perform
predicated (i.e., branch-free) swapping [20] to allow for a
constant cost regardless of how many elements we need to swap.
The total swap cost is the number of elements we can swap
times the cost of swapping them, which is two random writes
multiplied by the d dimensions, i.e., tswap = N ∗ δ ∗ 2 ∗ d ∗ σ.
The total cost in this phase is therefore equivalent to ttotal =
tlookup + α ∗ tscan + tswap . Finally, we set δ =

tbudget
N∗2∗d∗σ for

the adaptive indexing budget.
Interactivity Threshold. With Greedy Progressive KD-Tree,

in addition to the mandatory interactivity time threshold τ , the
user can additionally provide a “penalty” budget δ or a limit
x of queries. We distinguish two situations, depending on the
full scan cost. (1) If tscan < τ , we set ttotal = τ , i.e., ensure
that no query exceeds τ , and use our cost model to calculate
all tbudget,i and δ′i (incl. the first query’s tbudget,0 and δ′0) as
described above. In this case, we ignore the also provided

δ or x. (2) If tscan ≥ τ , we distinguish two cases. (2a) In
case the user provided a “penalty” budget δ, we start with
ttotal = tscan + tbudget with δ, and use our cost model to
calculate all tbudget,i and δ′i until the KD-Tree is sufficiently
built such that the scan cost per query drop below τ . (2b) In
case the user provided a limit x of queries, we use our cost
model to calculate the amount of indexing that is required to
build a partial KD-Tree such that the remaining scan cost per
query are less than τ , distribute this indexing work over x
queries, and calculate how much indexing budget tbudget++ is
need for each query. With this, we proceed as in (2a) for the
first x queries. In both cases, (2a) & (2b), we then proceed
with the user-provided τ as in situation (1).

IV. QUANTITATIVE ASSESSMENT

In this section, we provide a quantitative assessment of
our proposed adaptive/progressive indexes. This section is
divided into four parts. First, we define all real and synthetic
data sets and workloads used in our assessment. Second,
we analyze the impact of δ on the Progressive KD-Tree in
terms of first query cost, pay-off, time until full convergence,
and total time. Third, we provide an in-depth performance
comparison of our proposed adaptive/progressive indexes and
analyze their behavior under three real and eight synthetic
workloads. We also provide comparisons with the state-of-the-
art on multidimensional adaptive indexing QUASII (Q) and use
two variations of a full KD-Tree index as a baseline. The first
one using the average value of a piece as the pivot (AvgKD),
and the second one using medians (MedKD). Finally, we study
the behavior of our algorithms when the full scan cost is higher
than the interactivity threshold.

Setup. All indexes were implemented in a stand-alone C++
program. All the data is 4-byte floating-point numbers stored
in a columnar format (i.e., DSM). The code was compiled
using GNU g++ version 9.2.1 with optimization level -O3. All
experiments were conducted on a machine with 256 GB of
main memory, an Intel Xeon E5-2650 with 2.0 GHz clock, and
20 MB of L3 cache size.

A. Data Sets & Workloads

We use four different data sets in our assessment.
Power. The power benchmark consists of sensor data

collected from a manufacturing installation, obtained from the
DEBS 2012 challenge3. The data set has three dimensions and
10 million tuples. The workload consists of random close-range
queries on each dimension, a total of 3000 queries.

Skyserver. The Sloan Digital Sky Survey is a project to map
the universe. Their data and queries are publicly available at
their website4. The data set we use here consists of two columns,
ra and dec, from the photoobjall table with approximately 69
million tuples. The workload consists of 100,000 real range
queries executed on those two attributes.

Genomics. The 1000 Genomes Project collects data re-
garding human genomes. It consists of 10 million genomes,

3https://debs.org/grand-challenges/2012/
4http://skyserver.sdss.org



Fig. 4: Visual representation of the different synthetic workloads.

described in 19 dimensions. The workload consists of 100
queries constructed by bio-informaticians.

Uniform. It follows a uniform data distribution for each
attribute in the table, consisting of 4-byte floating-point
numbers in the range of [0, N), where N is the experiment’s
number of tuples. We use eight different synthetic workloads in
our performance comparison, similar to the ones described in
Holanda et al. [7] but extended for the multidimensional case.
Figure 4 depicts a two-dimensional example of these workloads
with the mathematical formulas used to generate them. In
addition to these workloads, we propose a new one, called
shifting. The shifting workload represents a common scenario
in data exploration where the columns being queried change
constantly (e.g., the data scientist executes ten queries on three
columns, which leads him to investigate other three columns,
and so forth). When generating a synthetic workload, we take
as parameter the overall query selectivity σ. To keep σ constant,
regardless of the number d of dimensions used, we set the per-
dimension selectivity with d dimensions to σd = d

√
σ; e.g., for

σ = 1%, we get σ2 = 10%, σ4 = 31%, σ6 = 46%, σ8 = 56%.

B. Impact of delta (δ) on Progressive KD-Tree

The parameter δ defines a percentage of the total amount
of our data that is pivoted per query. If δ = 0, no indexing is
performed, hence only full scans are executed, and the index
will never converge. On the other hand, if δ = 1, the creation
phase completes in the first query, with the data fully pivoted
once in the first dimension. In this section, we explore how δ
impacts our index in terms of the burden on the first query, how
many queries it takes for the index to pay-off when compared to
a full scan, how much time it takes until full index convergence,
and the impacts on cumulative time for the entire workload.
We use a uniform data set and workload, with 30 million
rows, d ∈ {2, 4, 6, 8} columns, and 1000 queries with 1%
selectivity. We test with multiple δ values, ranging from 0.1 to

1. Where applicable, we compare Progressive KD-Tree (PKD)
with Adaptive KD-Tree (AKD), QUASII (Q), Average/Median
KD-Tree (AvgKD/MedKD), Full Scan (FS). Both Average and
Median KD-Tree are built using the attribute order given by
the table schema.

First Query. The first query cost is the cost of fully scanning
the data with addition of copying and pivoting a δ-fraction of
the data. Figure 5a depicts the first query cost over varying
δ for multiple columns. With Progressive KD-Tree, the cost
increases linearly as we increase δ, and hence the amount of
indexed data, with the impact being larger the more columns
are involved, i.e., the more data needs to be copied. With
δ = 0, the first query merely performs a Full Scan. The first
query cost for Adaptive KD-Tree is about the same as for
Progressive KD-Tree with δ ∈ [0.6, 0.7]. The first query cost
of QUASII is significantly higher that those of both Adaptive
and Progressive KD-Tree due to the more intensive refinement
work of QUASII. For Average KD-Tree and Median KD-Tree,
the first query costs grow linearly with the number of columns.
We omit them from Figure 5a as bulding the entire index is
far more expensive than any query shown there.

Pay-off. In this experiment, we define pay-off as the number
q of queries required until investing in incrementally building
the Progressive KD-Tree pays off compared to performing
only full scans without indexing, i.e., the smallest q for which∑q
i=0 ti,progKD ≤

∑q
i=0 ti,FScan . Figure 5b depicts the pay-

off for multiple dimensions. While a small δ limits the indexing
impact over the initial queries, it also limits and the indexing
progress. For workloads with high per-column selectivity, this
results in the queries being capable of taking advantage of
the little index progress early on. However, in a workload
with a low per-column selectivity (e.g., with 8 columns, we
need a per-column selectivity of 56% to yield an overall query
selectivity of 1%), this results in the queries not being able to
take advantage of the indexing early on. For example, with δ =
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Fig. 5: Impact of δ on Progressive KD-Tree.

0.1 it takes 10 queries to pivot the first node fully. Since in our
experiment, we use a uniform data set, and the Progressive KD-
Tree uses averages as pivots, that results in a pivot that partitions
the data on two pieces with approximately 50% of the total
data. In the case of an 8 dimensional workload with per-column
selectivity of 56%, the workload is not able to take advantage
of the index for the first 10 queries. Hence, the initial queries
always perform index creation and full scans, resulting in a
higher pay-off when compared to lower per-column selectivities.
Furthermore, a higher δ reduces the limitation on the index
progress, creating an index that can boost queries early on and
diminishing the number of queries for the pay-off. Focusing on
only the minimal indexing for the given workload, Adaptive
KD-Tree pays-off as early as the quickest variant of Progressive
KD-Tree (δ = 0.1).

Convergence. The Convergence is defined as the time, in
seconds, it takes for the Progressive KD-Tree to fully index the
data and achieve the same query performance as the Average
KD-Tree. Figure 5c depicts the convergence for multiple
dimensions. The time to converge increases with the number
of dimensions, because the average query time also increases.
However, since δ determines a percentage of the data that is
indexed per query, the number of dimensions has no impact
on number of queries to converge. For example, with δ = 0.1
the number of queries to converge is about 100, independent
on the number of columns.

Total Response Time. In Figure 5d, downward-pointing
triangles (“Total”) mark the cumulative times to execute
the entire workload of 1000 queries, while upward-pointing
triangles (“After”) mark the cumulative times for only the tail
of the workload after the index is fully built and used for
optimal query performance, i.e., no further index refinement
is performed. The shaded range between both indicates the
cumulative time until the index is fully built. Progressive KD-
Tree takes at most 103 queries to converge to a full index with
δ = 0.1, or even as a mere 10 queries with δ = 1. Consequently,
90% (δ = 0.1) to 99% (δ = 1) of the 1000 queries in the
workload benefit from the fully-built index, accounting for the
majority of the cumulative execution time due to their number
rather than per-query time. Only between 1% (δ = 1) and
10% (δ = 0.1) of the workload contribute to progressively
constructing the index. For the non-progressive techniques,
we only show the “Total” workload time, without breaking it

down into before and after convergence. Adaptive KD-Tree
and QUASII never converge in this experiment, while Average
KD-Tree and Median KD-Tree converge with the first query
by design. Overall, with δ ≥ 0.2, Progressive KD-Tree yields
about the same total workload time as the non-progressive
techniques. Only in the 8-dimensional scenario, QUASII and
Adaptive KD-Tree outperform Progressive KD-Tree.

Picking a Delta (δ). For exploratory data analysis, our
indexes must not impose a high burden over the initial queries,
while still paying off their investments quickly and preferably
converging fast and presenting a low total cost. Taking these
objectives in mind, we select a δ = 0.2 for our performance
comparisons. It offers a sharp decrease in total cost and
convergence when compared to δ = 0.1, without a significant
increase in cost in the first query.

C. Performance Comparison

In the remainder of the experimental section, we will focus
on comparing the performance of our three proposed indexes,
the Adaptive KD-Tree (AKD), the Progressive KD-Tree (PKD),
and the Greedy Progressive KD-Tree (GPKD) with the state-
of-the-art. In particular, we compare it with QUASII (Q) and
two KD-Tree full-index implementations, the Average KD-
Tree (AvgKD) that uses the average value of pieces as pivots
and the median KD-Tree (MedKD) that uses the median values
as pivots. We also test a Full Scan (FS) implementation using
candidate lists as the baseline.

We verify four main characteristics that are desirable in
indexing approaches for multidimensional exploratory data
analysis. (1) The first query cost. (2) The number of queries
executed so the investment performed on index creation pays-
off. (3) The workload robustness. (4) The total workload cost.
To evaluate our indexes we execute all workloads as described
in Section IV-A.

We execute the real workloads as given. For the Synthetic
workloads, we generate d = 8 dimensions, with 300 million
tuples for Uniform, Skewed, SequentialZoom, and 50 million
tuples for all others. All queries have σ = 1% overall selectivity,
while the per-dimension selectivity for all columns is σ8 = 56%.
The only exception is the sequential workload, where we only
generate two dimensions with σ2 = 0.1%. This is because
with the sequential workload, query ranges must not overlap;
with more than two attributes the per attribute selectivity is
too big, and using query selectivity σ = 1% would yield only



MedKD AvgKD Q AKD PKD(.2) GPKD(.2) FS

50
M

Unif(8) 20.20 12.46 5.11 3.07 1.36 1.36 0.91
Skewed(8) 20.23 12.48 6.25 3.49 1.26 1.26 0.82

Zoom(8) 20.28 12.68 6.13 3.24 1.32 1.31 0.84
Prdc(8) 20.17 12.42 6.99 6.94 0.99 1.00 0.60

SeqZoom(8) 19.98 12.42 5.23 2.90 1.42 1.41 0.93
AltZoom(8) 20.18 12.43 6.98 6.93 0.99 1.00 0.60

Shift(8) 20.20 12.46 5.11 3.07 1.36 1.36 0.91
Seq (2) 15.88 8.30 4.01 0.68 0.26 0.26 0.19

R
ea

l Power 1.52 0.83 0.33 0.23 0.08 0.08 0.06
Genomics 2.58 2.62 1.25 0.99 0.27 0.27 0.03
Skyserver 14.31 6.84 1.19 0.63 0.36 0.35 0.26

30
0M

Unif(8) 146.72 83.91 37.25 20.93 8.17 8.17 5.47
Skewed(8) 146.80 84.01 43.06 21.24 7.94 7.96 5.12

SeqZoom(8) 146.87 84.36 35.93 18.08 8.84 8.83 6.41

TABLE II: First query response time (Seconds).

MedKD AvgKD Q AKD PKD(.2) GPKD(.2)

50
M

Unif(8) 22.19 13.57 11.12 6.83 31.41 22.88
Skewed(8) 23.67 14.42 9.90 5.44 36.06 28.06

Zoom(8) 31.25 18.54 6.19 3.26 39.50 30.19
Prdc(8) 22.00 13.47 7.08 7.09 29.14 22.53

SeqZoom(8) 21.22 13.20 5.27 2.91 32.00 24.39
AltZoom(8) 21.53 13.15 8.12 7.57 19.15 26.46

Shift(8) 2094.98 1319.28 1085.27 26.34 1152.43 1263.61
Seq (2) 15.89 8.30 4.07 51.17 1.93 7.62

R
ea

l Power 1.79 0.96 0.81 0.41 1.04 1.80
Genomics 6.41 6.49 9.06 6.09 16.16 17.69
Skyserver 14.32 6.84 1.24 0.75 2.91 9.40

30
0M

Unif(8) 154.82 87.70 74.92 40.52 197.89 160.04
Skewed(8) 159.33 88.26 65.96 32.97 229.73 180.63

SeqZoom(8) 151.92 91.32 36.17 18.17 185.14 155.27

TABLE III: Pay-off (Seconds).

10 disjoint queries, hence, we decrease overall selectivity to
σ = 0.0001% which yields 1000 disjoint queries.

We use size threshold = 1024 tuples as a minimum
partition size for all indexes. Unless stated otherwise, all
progressive indexing experiments use an interactivity threshold
equal to the first query cost of Progressive KD-Tree with
δ = 0.2.

First Query. Table II depicts the first query cost of all
algorithms on all workloads. The Median KD-Tree and the
Average KD-Tree present the highest times on the first query
since they create a full index when we query a group of columns
for the first time. The Median KD-Tree usually presents a higher
cost since finding the median of a piece is more costly than
finding the average value. The adaptive indexes are up to one
order of magnitude cheaper than the full indexes since they
only index a focused region necessary to answer the query.
QUASII has a more aggressive partitioning algorithm than
the Adaptive KD-Tree (for example, in the first query of the
uniform workload the Adaptive KD-Tree creates 161 nodes
while QUASII creates 13,480) and, thus, ends up being a factor
2 slower in the first query evaluation. Finally, both progressive
indexing solutions have the same time on the first query, since
they execute it with the same δ. They impose the smallest
burden on the first query and are up to one order of magnitude
faster than the adaptive indexing solutions.

Pay-off. Table III depicts the time it takes for the investment
spent on index creation to pay-off when compared to a full scan
only scenario. For the full index approaches, the Average KD-
Tree presents a smaller pay-off than the Median KD-Tree due
to a lower cost on index creation while maintaining a similar
cost on index lookup. In the adaptive solutions, the Adaptive
KD-Tree has the lowest pay-off, not only when compared to
QUASII but overall, this is a direct result from its core design
of only indexing the pieces necessary for the executing query,
while QUASII performs a more aggressive refinement strategy
that increases its pay-off. The Adaptive KD-Tree has the worst
pay-off in the sequential workload, which represents its worst-
case scenario. Finally, the progressive solutions present the
highest pay-off in general, however it is important to notice that
we picked our δs optimizing for a low burden in the first query.
Since most experiments are with 8 columns, as depicted in

Q AKD PKD(.2) GPKD(.2)

50
M

Unif(8) 6E-01 2E-01 9E-02 1E-03
Skewed(8) 8E-01 2E-01 8E-02 2E-03

Zoom(8) 7E-01 2E-01 8E-02 1E-03
Prdc(8) 1E+00 9E-01 4E-02 6E-04

SeqZoom(8) 5E-01 2E-01 1E-01 2E-03
AltZoom(8) 1E+00 9E-01 8E-02 6E-04

Shift(8) 2E+00 9E-01 3E-02 1E-03
Seq (2) 3E-01 3E-03 1E-03 8E-05

R
ea

l Power 3E-03 1E-03 6E-04 3E-05
Genomics 2E-01 6E-02 1E-02 9E-04
Skyserver 4E-02 8E-03 4E-03 2E-04

30
0M

Unif(8) 3E+01 1E+01 4E+00 3E-02
Skewed(8) 4E+01 9E+00 3E+00 3E-02

SeqZoom(8) 3E+01 6E+00 4E+00 5E-02

TABLE IV: Query time variance (smaller is better).

Figure 5b to optimize for a low pay-off we would need to use
larger δs. One can notice, that the progressive solutions perform
the best on the sequential workload, due to the low number
of columns benefiting from the small δ. One can notice that
for the Shift(8) workload, no algorithm besides the Adaptive
KD-Tree pays-off due to the low number of queries executed
before shifting the columns we are looking into.

Figure 6a depicts the cumulative response time of the first
30 queries in the Genomics Benchmark. When compared to
full indexes, both adaptive and progressive indexes take longer
to pay-off and achieve full index response time. This is due to
the full indexes having a low first query cost as discussed in
the first query sub-section.

Robustness. To calculate the robustness we check the
variance in per-query cost, for the first 50 queries or up to
full index convergence. For full indexes, the variance is 0,
because it fully converges in the first query. Table IV depicts
the robustness of all adaptive and progressive algorithms. The
Adaptive KD-Tree is as robust as QUASII. The progressive
indexing solutions are the most robust options, with up to 3
orders of magnitude lower variance than the adaptive indexing
approaches, with the Greedy Progressive KD-Tree always
being the most robust, with a constant per-query cost until
convergence due to its cost model adaptive δ (Fig. 6b).

Total Response Time. Table V depicts the total response
time of all benchmarks. The Progressive indexing approaches
have a very similar response time when compared to the
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(b) Per query response time.
Uniform(8), first 50 queries.
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(c) Time breakdown.
Periodic(8).
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(d) Index size per query.
Periodic(8), first 1000 queries.

Fig. 6: Total Response Time, Per-Query Cost, and Index Size Comparison.

MedKD AvgKD Q AKD PKD(.2) GPKD(.2) FS

50
M

Unif(8) 109.7 101.4 95.6 74.3 122.6 109.9 857.5
Skewed(8) 147.6 138.3 107.6 43.1 160.8 151.1 856.6

Zoom(8) 52.0 40.9 11.4 7.1 58.5 51.6 687.1
Prdc(8) 85.8 73.6 61.9 229.9 93.3 86.4 807.7

SeqZoom(8) 31.0 24.2 8.2 4.5 46.6 34.1 499.6
AltZoom(8) 44.0 34.2 18.9 22.4 53.4 48.3 747.0

Shift(8) 2095.0 1319.3 1085.3 775.5 1152.4 1263.6 885.5
Seq (2) 15.9 8.3 6.0 102.9 7.8 7.6 332.6

R
ea

l Power 26.0 24.4 24.6 31.3 25.0 24.7 164.6
Genomics 10.9 10.9 10.6 7.3 16.2 17.7 16.1
Skyserver 16.0 14.1 6.9 12.0 10.7 10.4 20186.5

30
0M

Unif(8) 468.8 366.9 422.9 352.0 558.4 472.7 5423.8
Skewed(8) 581.9 399.8 521.0 195.2 674.9 595.9 5367.1

SeqZoom(8) 183.0 122.5 48.7 24.5 277.3 186.0 3221.2

TABLE V: Total response time (Seconds).

full indexes, due to their design characteristics prioritizing
robustness and convergence over total response time, that is
reinforced by the low δ picked for the experiments. Adaptive
indexing always has the lowest total response time, due to
their high focus on refining pieces requested by the currently
executing query, with the Adaptive KD-Tree presenting the
fastest results for the majority of the workloads. The exception
is for highly skewed workloads (e.g., Alternating Zoom and
SkyServer), which is due to QUASII’s extra refinement paying-
off almost immediately, and in the Periodic and Sequential
Benchmarks. Figure 6c presents the total cost breakdown of the
Periodic benchmark for both adaptive indexes. QUASII presents
a lower adaptation, scan, and index search costs, indicating
that our index is constantly performing refinement with the
queries taking almost no benefit from it. Figure 6d depicts the
number of created nodes throughout the workload execution,
one can notice the sudden increases on node number over 250
and 500 nodes, due to the restart of the periodic pattern. This
particular workload causes the Adaptive KD-Tree always to
visit unrefined pieces on the following queries, causing its high
refinement costs and the insertion of many nodes. The latter
causes a high cost for index lookup search.

The Sequential benchmark emulates the worst case scenario
for the Adaptive KD-Tree, where the KD-Tree ends up almost
equal to a linked list. This happens due to blindly adapting
using the query predicates and because the KD-Tree has no self-
balancing mechanism. The Shifting benchmark also presents a
peculiar result, where the only index with a response time that
is faster than the full scan is the Adaptive KD-Tree with its

MedKD AvgKD Q AKD PKD(.2) GPKD(.2) FS

U
ni

f(
2)

First Query 15.94 8.35 2.89 1.05 0.55 0.54 0.52
PayOff 16.05 8.40 5.56 1.63 1.94 8.18 -

Convergence - - * * 9.68 7.78 -
Robustness - - 0.20 0.02 0.01 0.00 -

Time 19.08 11.49 10.76 9.34 12.75 11.24 425.34

U
ni

f(
4)

First Query 17.13 9.56 3.14 1.65 0.83 0.82 0.65
PayOff 17.33 9.66 5.80 3.26 4.65 11.40 -

Convergence - - * * 14.47 10.66 -
Robustness - - 0.20 0.08 0.03 0.00 -

Time 25.27 17.72 17.13 18.32 22.32 19.39 614.59

U
ni

f(
8)

First Query 20.20 12.46 5.11 3.07 1.36 1.36 0.91
PayOff 22.19 13.57 11.12 6.83 31.41 22.88 -

Convergence - - * * 38.02 21.34 -
Robustness - - 0.60 0.20 0.09 0.00 -

Time 109.69 101.41 95.59 74.27 122.60 109.90 857.54
U

ni
f(

16
)

First Query 45.10 36.99 29.19 10.85 2.07 2.05 1.30
PayOff 223.96 173.06 50.65 35.64 183.21 185.68 -

Convergence - - * * 96.14 74.17 -
Robustness - - 20.00 3.00 0.03 0.08 -

Time 1054.69 1023.24 461.45 260.02 1026.44 1029.89 1258.90

TABLE VI: Performance difference on Uniform benchmark
with different number of attributes.

workload-dependent refinement approach quickly paying off
for such a small window of queries.

D. Impact of Dimensionality

In this section, we evaluate how the number of dimensions
affects the performance of each technique. We experiment with
a uniform workload of 1000 queries with 1% selectivity, on a
uniform data set with 2, 4, 8 and 16 columns. Table VI depicts
the first query cost, time to pay-off, time until convergence,
robustness, and total execution time for each index. Similar
to the results presented in the previous section, the Average
KD-Tree has the upper hand in terms of total cost and number
of queries until pay-off, while the Progressive KD-Trees are the
most robust with a predictable convergence. One can notice that
as the number of dimensions increases, the difference in total
time and pay-off between the Adaptive Indexing solutions and
the Progressive Indexing increases drastically. This happens
due to the convergence principle of progressive indexing, which
causes it to behave similarly to a full index.

E. Full Scan Exceeding the Interactivity Threshold

Figure 7 depicts the behavior of the Adaptive KD-
Tree (AKD), the Progressive KD-Tree (PKD), and both options
for the Greedy Progressive KD-Tree, with a fixed number
of queries as input (GPFQ) and a fixed penalty (GPFP).
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Fig. 7: Adaptive and Progressive KD-Tree with scans costs
exceeding the interactivity threshold; first 100 queries.

For this experiment, we set our interactive threshold to 0.5s,
approximately half the cost of a full scan. AKD performs
the necessary indexing as a pre-processing step during the
first query. Hence its first query is one order of magnitude
more expensive than a full scan. Due to this investment, all
remaining queries are under the threshold. PKD starts with the
user-provided δ of 0.2 and gradually reaches a scan cost below
the interactivity threshold. At that point, it calculates a new
δ′, which gradually converges to a full index. Both GPFQ and
GPFP have similar behavior, they start on a cost higher than
the interactivity threshold, have a sudden drop to the threshold
cost, and later one more drop until full convergence. For GPFQ,
this first drop happens after ten queries, as requested by the
user, at the expense of slightly higher first query costs than
GPFP. GPFP uses an indexing penalty of δ = 0.2, and only
drops once pieces are small enough, slightly later than GPFQ.

V. CONCLUSIONS & FUTURE WORK

In this paper, we extended existing work on multidimensional
adaptive indexing by introducing three new indexing algorithms,
one adaptive and two progressive ones. We showed that our
algorithms are superior when compared with the state-of-the-art
multidimensional indexing in a variety of real and synthetic
workloads. In general, we notice that the Adaptive KD-Tree
is the fastest solution due to its minimum indexing property:
Indexing only what is strictly necessary to answer the query.
Both Progressive KD-Tree’s present the lowest penalty on the
initial queries, with the Greedy Progressive KD-Tree yielding
the fastest convergence and best robustness. In general, which
technique to use depends on the properties desired by the user,
if the ultimate goal is the total cost, the Adaptive KD-Tree is
the algorithm of choice. However, in exploratory data analysis,
where we want to keep the impact on initial queries low and
we want a constant query response time without performance
spikes, Greedy Progressive KD-Tree is the algorithm of choice.

As future work, we point out the following directions:
Adaptive/Progressive Table Partitioning: A similar reor-

ganization strategy can be extended for the original table’s
data instead of creating a secondary index structure. This
would increase the usability of the data reorganization since the

multidimensional indexes will suffer from tuple reconstruction
costs when accessing non-indexed tuples.

Approximate Adaptive/Progressive Indexing: Keeping
query times interactive becomes a larger challenge the larger
the data sets get. To truly achieve interactive times also with
huge data sets, adaptive/progressive indexing would need to be
integrated with approximate query processing, and construct
the index while accessing samples of the data. The advantage
is that the further the index is progresses, the more precise the
approximation would be.
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[17] Stefan Sprenger, Patrick Schäfer, and Ulf Leser. Multidimensional range
queries on modern hardware. In SSDBM, pages 4:1–4:12, 2018.

[18] Ahmed M Aly, Ahmed R Mahmood, Mohamed S Hassan, Walid G
Aref, Mourad Ouzzani, Hazem Elmeleegy, and Thamir Qadah. Aqwa:
adaptive query workload aware partitioning of big spatial data. PVLDB,
8(13):2062–2073, 2015.

[19] Sheng Wang, David Maier, and Beng Chin Ooi. Fast and adaptive
indexing of multi-dimensional observational data. PVLDB, 2016.

[20] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR, 2005.


