Relational Queries with a Tensor Processing Unit

Pedro Holanda
CWI, Amsterdam, NL
holanda@cwi.nl

ABSTRACT

Tensor Processing Units are specialized hardware devices built to
train and apply Machine Learning models at high speed through
high-bandwidth memory and massive instruction parallelism. In
this short paper, we investigate how relational operations might
be translated to those devices. We present mapping of relational
operators to TPU-supported TensorFlow operations and experi-
mental results comparing with GPU and CPU implementations.
Results show that while raw speeds are enticing, TPUs are unlikely
to improve relational query processing for now due to a variety of
issues.

1 INTRODUCTION & RELATED WORK

For the last four decades, the use of specialized hardware has been
investigated to improve performance of relational query process-
ing [2, 4]. General-purpose processors have reached a plateau with
regards to integration density and clock speeds. At the same time,
innovations in systems have removed inefficiencies to a large ex-
tent [3, 9]. To achieve significant performance improvements, use
of specialized hardware has regained some urgency.

A common approach is to re-purpose hardware that is available
in large quantities at low cost, most prominently Graphics Process-
ing Units (GPU) [5, 7]. The disadvantage here is that the design
of those devices was developed for a very different use-case, 3D
computer games, and they only partly benefit the data processing
use case. A large number of systems is now openly available that
utilize GPUs, for example “BlazingDB” or “OmniSci”.

The rise of Machine Learning (ML) applications has produced a
new class of hardware devices, so-called Tensor Processing Units
(TPU). These devices are built to efficiently support ML workflows
by accelerating linear algebra operations such as matrix multipli-
cation. Efficiency in those tasks is achieved with high-bandwidth
memory (HBM) and massive parallelism of computation. For exam-
ple, the third-generation Cloud TPU by Google reportedly achieves
420 teraflops on 128 GB of HBM.

With their massive computation parallelism and high-bandwidth
memory, TPUs appear somewhat similar to Graphics Processing
Units. Moreover, their intended use case — Machine Learning work-
flows — is far more related to data management than 3D gaming.
Considering their superior performance they are a promising can-
didate to speed up query processing.

TPUs are controlled through the TensorFlow API. TensorFlow
exposes a low-level library of bulk data transformations. The TPUs
implement a limited subset of the TensorFlow API [6], ca. 180
operators at the time of writing.

In this experimental paper, we investigate the performance of
the third-generation Google TPU for typical analytical query pro-
cessing tasks. The research question is whether TPUs can benefit
analytical query processing.

Hannes Miihleisen
CWI, Amsterdam, NL
hannes@cwi.nl

2 OPERATOR MAPPING

The TensorFlow API does not directly expose relational operators
such as selections, projections, joins or aggregations. However, it
is possible to combine hardware-supported TensorFlow operators
in such a way that the result is equivalent to the corresponding
relational operator. Below we will give some examples of how this
can be achieved.

Selection. It can be achieved using the tf.where and tf.gather
operations. tf.where takes a Boolean vector and returns the in-
dices where the input is true. tf.gather takes these coordinates
and applies them to the payload vector. If more columns should be
projected, we can make use of the rectangular nature of relational
tables and re-use the filter vector on other columns.

Single-Value Aggregation. The SUM, MAX and MIN aggregate
functions can be performed by the reduce TensorFlow operations
reduce_sum,reduce_min and reduce_max respectively.

The COUNT and AVG aggregate functions do not have a one-to-
one map with TensorFlow. The COUNT can be performed by casting
a boolean mask filter, using the tf.cast operator, to a tf.int32
type and executing a reduce_sum afterwards. The AVG function is
composed by the SUM divided by the COUNT aggregates.

Grouped Aggregation. Group By operations are challenging
insofar as the possible groups need to be determined beforehand
in the TensorFlow APL This can be done using the tf.unique
operator. However, this operator is not currently supported by the
TPU hardware. This requires a two-phase execution where first the
groups are determined with CPU code, followed by then the plan
generation and execution on the TPU. For grouping, we use the
extended form of the tf.where (cond, true_val, false_val)
operator, which acts very similar to a SQL CASE statement. Using
constant vectors of 1 and 0 together with a cast, we can then use
tf.where again to zero rows that are not in the current group and
finally use tf.reduce_sum to compute the per-group aggregate.
For non-grouped aggregates, the first filtering stage is redundant.

One major drawback of this approach is the pre-computation
of the groups using CPU code. If the amount of groups is large,
performance will be reduced.

Dimension Join. A form of nested loop join can be implemented
by using the tf.while_loop operator. The body and condition
must be implemented as functions and an index must be defined
the tf.while_loop call. The condition function is checked before
execution of the loop and the body function defines it. For a join,
the body is composed of a tf. gather operation that is used to loop
through the outer relation and a tf.where that is used to filter the
elements from the inner relation that match the outer relation key.
The major drawback of this approach is that TensorFlow generates
as many graph nodes as the body loop size times the amount of
times it is executed. The creation, compilation and optimization
steps of the DAG are heavily dependent on its size. Hence compiling
joins for large outer relations will reduce compilation performance.


https://github.com/weld-project/weld-benchmarks/blob/e2de579fbccc5972f3aa1ad89068f18beeb94eb4/benchmarks/tpch_q1/tpch_q1.weld

SF CPU GPU TPU HyPer

Selection 1 28 068 0.2 75
10 380 506 2.7 16

‘ 1 120 005 006 63
Single-Value Aggr. 0 57 949 05 30
1 13 15 012 8.2

Grouped Aggr. 10 340 144 1.1 14
Dim. Join 1 12 107 0.06 16
: 10 4 127 0.08 0.9

1 132 542 50 7

Top N 10 143 471 649 20

Table 1: Microbenchmark Results

Top N. The tf.nn.top_k operator allows to return the sorted,
ascending or descendent n elements. In case multiple columns
are ordered in the order_by function, the columns can be mul-
tiplied by powers of 10, summed together and sorted by using the
tf.nn.top_k operator with n equal to the column size. The index
generated by the operator can then be applied to all columns using
tf.gather.

3 EXPERIMENTAL RESULTS

In this section, we provide an evaluation of the TPU using micro-
benchmarks over TPC-H data. In addition, we provide a comparison
of the performance of the TPUs with GPU, CPUs and the commer-
cial RDBMS HyPer (Version 20182.18.1009.2120).

We implemented all queries using the TensorFlow API [1] for
Python, which can target CPUs, GPUs and TPUs simultaneously. All
experiments were conducted on a Google cloud machine equipped
with 360 GB main memory, 96-core Intel(R) Xeon(R) CPU @ 2.00GHz,
Nvidia Tesla P100 GPU and a version 3-8 TPU. While not avail-
able for sale, it is possible to buy time on Google’s TPUs through
their Cloud API, currently priced at 8% per hour. All experiments
were repeated five times with the last result recorded. TensorFlow
results do not include compilation and data transfer times. Also,
the TensorFlow implementations do not perform numeric overflow
checking and used the internal floating point type to represent
numeric values since this was recommended by the documentation
for best performance. Furthermore, since TPUs only supports nu-
meric data, dictionary-encoding of category and date columns was
performed for them. We are committed to reproducibility, hence
all experimental code is available on-line. !

3.1 Microbenchmarks

Selection: Results for selecting a subset of rows show the TPU’ to
perform best at first glance. The projection of the Boolean selection
vector created by the expression to a list of indices used to gather
the matching rows is however not supported by the TPU interface,
requiring them to be performed in CPU code. Computing these
indices also was responsible for ca. 75% of time in the TensorFlow
CPU version. This is likely unnecessary considering Hyper’s results
on this experiment. Time for GPU and TPU scales linearly with
data size.

Uhttps://github.com/pholanda/tpc-tpu

Pedro Holanda and Hannes Miihleisen

Single-Value Aggregation: TPU and GPU performance is high
and similar, owing to the good mapping between the relational task
of single-value aggregation and the hardware operations. The CPU
version is outperformed by an order of magnitude. Time for GPU
and TPU scales linearly with data size.

Grouped Aggregation: The computation of unique groups that
is required for the TensorFlow version is not supported by either
GPU nor TPU back-ends. We have thus removed it. The TPU shows
by far the best performance, outperforming the GPU version by
an order of magnitude. Again, the TensorFlow CPU code is outper-
formed by HyPer (which does compute the groups). Time for GPU
and TPU scales linearly with data size.

Dimension Join: Results for dimension join show widely differ-
ing results. While the TPU performs best, inspection of the Tensor-
Flow execution plans showed three vastly different versions. One
problematic observation is that compilation time for the Tensor-
Flow versions highly depends on the amount of rows in the outer
relation. For dimension joins, this might be acceptable. In GPUs
and TPUs, control flow is necessarily handed over to the hardware
to achieve best performance; this is problematic for more complex
operations like joins.

Top N: For Top N, the TPU shows the slowest performance.
For SF10, HyPer outperforms the TensorFlow implementations
regardless of hardware. This might be due to sorting not being a
priority in ML workflows and the lack of optimization attention
that results from it. Profiling results show that the TensorFlow
implementations perform a full sort to implement Top N, which is
wasteful.

4 DISCUSSION & CONCLUSION

While the experimental results presented in the previous section
might appear promising, there are several serious hurdles to using
TPUs to benefit data management. As is customary [8], experi-
ments did not include hardware session management, execution
plan generation and data transfer. Additional time required for this
is measured in seconds, not milliseconds. Joins and grouped ag-
gregations were particularly problematic with their performance
depending on data and group cardinality and unsupported opera-
tors. Unfortunately it is precisely the fusing of a large amount of
operators that is required to outperform traditional systems like
HyPer using specialized hardware such as TPUs. This is partic-
ularly true due to the additional cost of transferring data to be
processed from main memory into the high-bandwidth TPU mem-
ory. TPUs also rely heavily floating point numbers, yet they lead
to numeric drift in aggregations. Naturally, the comparison with
HyPer is completely unfair [10], since HyPer is fully-fledged sys-
tem that supports persistent storage, numerous data types, error
checking etc. It is most likely possible to improve the usability of
TPUs for relational tasks, either through more advanced sequences
of TensorFlow operations or through changes to the TPU and their
APIs themselves. For example, better integer support would allow
for less numeric drift on aggregations, support for selection vector
generation with single-argument tf.where and unique value gen-
eration with tf.unique. Given the rapid pace of TPU development,
it might not be too unreasonable to hope for those.


https://github.com/pholanda/tpc-tpu

Relational Queries with a Tensor Processing Unit

REFERENCES

(1]

[2

=

8

=

[9

=

[10]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaogiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). 265-283. https://www.usenix.org/system/files/conference/
o0sdi16/0sdi16-abadi.pdf

E. Babb. 1979. Implementing a Relational Database by Means of Specialized
Hardware. ACM Trans. Database Syst. 4, 1 (March 1979), 1-29. https://doi.org/
10.1145/320064.320065

Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In CIDR (2007-09-14). 225-237. http://dblp.uni-trier.
de/db/conf/cidr/cidr2005.html#BonczZN05

David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens, Krishna B.
Kumar, and M. Muralikrishna. 1986. GAMMA - A High Performance Dataflow
Database Machine. In Proceedings of the 12th International Conference on Very
Large Data Bases (VLDB °86). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 228-237. http://dl.acm.org/citation.cfm?id=645913.671463

Rui Fang, Bingsheng He, Mian Lu, Ke Yang, Naga K. Govindaraju, Qiong Luo, and
Pedro V. Sander. 2007. GPUQP: Query Co-processing Using Graphics Processors.
In Proceedings of the 2007 ACM SIGMOD International Conference on Management
of Data (SIGMOD °07). ACM, New York, NY, USA, 1061-1063. https://doi.org/10.
1145/1247480.1247606

Google. 2019. Available TensorFlow Ops. https://cloud.google.com/tpu/docs/
tensorflow-ops

Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha.
2004. Fast Computation of Database Operations Using Graphics Processors. In
Proceedings of the 2004 ACM SIGMOD International Conference on Management
of Data (SIGMOD °04). ACM, New York, NY, USA, 215-226. https://doi.org/10.
1145/1007568.1007594

Chris Gregg and Kim Hazelwood. 2011. Where is the Data? Why You Cannot
Debate CPU vs. GPU Performance Without the Answer. In Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS ’11). IEEE Computer Society, Washington, DC, USA, 134-144. https:
//doi.org/10.1109/ISPASS.2011.5762730

Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (June 2011), 539-550. https://doi.org/10.14778/
2002938.2002940

Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Miihleisen. 2018. Fair
Benchmarking Considered Difficult: Common Pitfalls In Database Performance
Testing. In Proceedings of the Workshop on Testing Database Systems (DBTest’18).
ACM, New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3209950.
3209955


https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1145/320064.320065
https://doi.org/10.1145/320064.320065
http://dblp.uni-trier.de/db/conf/cidr/cidr2005.html#BonczZN05
http://dblp.uni-trier.de/db/conf/cidr/cidr2005.html#BonczZN05
http://dl.acm.org/citation.cfm?id=645913.671463
https://doi.org/10.1145/1247480.1247606
https://doi.org/10.1145/1247480.1247606
https://cloud.google.com/tpu/docs/tensorflow-ops
https://cloud.google.com/tpu/docs/tensorflow-ops
https://doi.org/10.1145/1007568.1007594
https://doi.org/10.1145/1007568.1007594
https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/3209950.3209955
https://doi.org/10.1145/3209950.3209955

	Abstract
	1 Introduction & Related Work
	2 Operator Mapping
	3 Experimental Results
	3.1 Microbenchmarks

	4 Discussion & Conclusion
	References

